行列式一定是方阵吗
行列式一定是方阵,行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
行列式的性质
①行列式A中某行(或列)用同一数k乘,其结果等于kA。
②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
④行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
行列式的现代概念
进入十九世纪后,行列式理论进一步得到发展和完善。奥古斯丁•路易•柯西在1812年首先将“determinant”一词用来表示十八世纪出现的行列式,此前高斯只不过将这个词限定在二次曲线所对应的系数行列式中。柯西也是最早将行列式排成方阵并将其元素用双重下标表示的数学家(垂直线记法是阿瑟•凯莱在1841年率先使用的)柯西还证明了行列式行列式的性质(实际上是矩阵乘法),这个定理曾经在雅克•菲利普•玛利•比内的书中出现过,但没有证明。
十九世纪五十年代,凯莱和詹姆斯•约瑟夫•西尔维斯特将矩阵的概念引入数学研究中。行列式和矩阵之间的密切关系使得矩阵论蓬勃发展的同时也带来了许多关于行列式的新结果,例如阿达马不等式、正交行列式、对称行列式等等。
与此同时,行列式也被应用于各种领域中。高斯在二次曲线和二次型的研究中使用行列式作为二次曲线和二次型划归为标准型时的判别依据。之后,卡尔•魏尔斯特拉斯和西尔维斯特又完善了二次型理论,研究了解析失败 (PNG 转换失败; 请检查是否正确安装了 latex, dvips, gs 和 convert): lambda 矩阵的行列式以及初等因子。行列式被用于多重函数的积分大约始于十九世纪三十年代。1832年至1833年间卡尔•雅可比发现了一些特殊结果,1839年,欧仁•查尔•卡塔兰发现了所谓的雅可比行列式。1841年,雅可比发表了一篇关于函数行列式的论文,讨论函数的线性相关性与雅可比行列式的关系
现代的行列式概念最早在19世纪末传入中国。1899年,华蘅芳和英国传教士傅兰雅合译了《算式解法》十四卷,其中首次将行列式翻译成“定准数”。1909年顾澄在著作中称之为“定列式”。1935年8月,中国数学会审查各种术语译名,9月教育部公布的《数学名词》中正式将译名定为“行列式”。其后“行列式”作为译名沿用至今。