满秩矩阵一定可逆吗
时间:2023-06-15 14:10文/学帆高考
一定。因为满秩矩阵是判断一个矩阵是否可逆的充分必要条件。若矩阵是满秩矩阵,则为n阶方阵,|A|≠0,即|A|是A的n阶非零子式,符合可逆矩阵只要求|A|<>0的条件,即为可逆矩阵,同时,可逆矩阵的度行列式就是最高的不为零的子式(是n阶的),所以可逆矩阵也必然是满秩矩阵。
满秩矩阵
设A是n阶矩阵, 若r(A) = n, 则称A为满秩矩阵。但满秩不局限于n阶矩阵。
若矩阵秩等于行数,称为行满秩;若矩阵秩等于列数,称为列满秩。既是行满秩又是列满秩则为n阶矩阵即n阶方阵。行满秩矩阵就是行向量线性无关,列满秩矩阵就是列向量线性无关;所以如果是方阵,行满秩矩阵与列满秩矩阵是等价的。
矩阵
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。